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After successfully completing this task, you should be able to...

e (Compare and contrast different models in the LLM ecosystem in order to determine the best
model for any given task.

e Implementand train a Transformer-based language model from scratch in Pytorch.

e Utilize open-source libraries to finetune and do inference with popular pre-trained language
models.

e Understand how to apply LLMs to a variety of downstream applications, and how decisions made
during pre-training affect suitability for these tasks.

e Read and comprehend recent, academic papers on LLMs and have knowledge of the common
terms used in them (alignment, scaling laws, RLHF, prompt engineering, instruction tuning, etc.).

e Design new methodologies to leverage existing large scale language models in novel ways.




Assessment

e Six homework assignments (60%)
o Tobe completed Individually

o Mixture of practical and comprehension-based questions

o Tobeturned in via Gradescope
e One midterm (20%)

e One final exam (20%)




Homeworks

Homework 1: Homework 4:
e Implementa Transformer from scratch e How to choose between models
Implement a tokenizer e Measuring and reducing bias
e Inference with the HuggingFace API
Homework 5:
Homework 2: e Improving training efficiency
e Understand pre-training data curation
decisions Homework 6 (mini-project):
e Implement a pre-training data pipeline e Apply techniques learned in class to a task
of your choice
Homework 3:

e Retrieval-augmented generation
e Tool-use

i A A




What we expect from students taking this class:

e Fluentin Python
e Comfortable with with a Python deep learning framework such as PyTorch
e Able to commit ~9 hours per week to homework

e Have already taken courses in NLP and ML, or wiling to put in extra time to self-learn needed

concepts as they come up




Waitlist Policy

e Thisisa popular class, but we expect most of you who are on the waitlist, if you stick around, will
eventually get in.

e (Cometo class. Start on Homework 1.

e et us know if you have done all but still cannot get in near Sep. 10th.
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1. What is a Language Model?




What is a Language Model?

A language model is any model that outputs a probability distribution over the next token®
in a sequence given the previous tokens in the sequence, thatis: P(¥¢ly1.t-1)-

Historically, language models were statistical n-gram models. Instead of taking into account
the full history of the sequence, they approximated this history by just looking back a few
words.

*For now, let's assume token = word. We'll come back this.




What is a Language Model?

Example: Suppose we are building a statistical language model using a text corpus, C. We
observe that the word “apple” follows the words “eat the” 2% of the times that “eat the”
occurs in C.

This means we'd set:
P(“apple” | “eat the”) = 0.02.

Since “eat the apple” is three words, we'd call this a 3-gram model.




Language models are not

inherently generative.




Computing Sequence Likelihood

Language models output the likelihood of the next word: P(y¢|y1.6-1)-

Often we will talk about the likelihood of an entire sequence P(Y) = P(y1, V1, -, V1)-




Computing Sequence Likelihood

Sequence likelihood can be computed from an LM using the chain rule:

P([”l”, ”eat”, ”the”, llapplell]) -
P(nappleu | [”I”, ”eat", ”the”]) * P(ntheu | [IIIN' lteatrl]) * P(neatu | [ulu]) * P(ulu])

In math:
P(Y) - P(yl,yz,

V1) = Pyrlyir—1) X P(yr—1ly1.7-2) X ==+ X P(y,|start of sequence)




Neural Language Models: Conditioned v. Unconditioned

Neural language models can either be designed to just predict the next word given
the previous ones, or they can be designed to predict the next word given the
previous ones and some additional conditioning sequence.

Conditioned: P(Y | X)

Unconditioned: P(Y)
At each step the LM predicts: P(y¢ | V161, X1.1)

At each step the LM predicts:

P [y1:-1)
Examples
« T5
Examples: « Most machine translation models
e GPT-2/GPT-3
* LLaMA Sometimes called sequence-to-sequence or

seg2seq models.
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2. Building Blocks of Language Models




Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder.
Conditioned ones have an encoder and a decoder.

Unconditioned Language Model

yla R 7yl‘1P(YI = l)

Conditioned Language Model

X1yoees XT w P(Y, =)

Yis oo s V-1




Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder. Conditioned ones
have an encoder and a decoder.

Unconditioned Language Model

yla R 7yl‘1P(YI = l)

Conditioned Language Model
There are also encoder-

only models, but they .
aren't traditional Xloeees XT Decoder P, =)
4N

language models.

Yis oo s V-1




Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into one for
an encoder-decoder architecture, and vice-versa.

TASK: Continue the sequence.

Decoder-only version:

P(Y="Once upon a time there lived a dreadful ogre.”)

Encoder-decoder version:

P(Y="lived a dreadful ogre.” | X=“Once upon a time there”)




Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into one for
an encoder-decoder architecture, and vice-versa.

TASK: Translate from English to French.

Decoder-only version:

P(Y="English: The hippo ate my homework. French: L'hippopotame a mangé mes devoirs.”)

Encoder-decoder version:

P(Y="L'hippopotame a mangé mes devoirs.” | X=“The hippo ate my homework.”)




Summary of Terms You Should Know

Input sequence: x4, ..., Xt
Target sequence: yq, ..., Y1

yle 9y1‘—1




Summary of Terms You Should Know

Input sequence: x4, ..., Xt
Target sequence: yq, ..., Y1

X1y eons XT Decoder P(Y; =)

Or sometimes..

Yis oo s V-1 PG)(Yt:l)

Represents the
parameters of the neural
network.




Summary of Terms You Should Know

Input sequence: x4, ..., Xt
Target sequence: yq, ..., Y1

X1y one s XT Decoder P(Y; =)
Or sometimes...

Po (Y: = i)

Or sometimes...

P(Yt = ille o Ye—1s
X1y ey X5 6)

yle ayl‘—l




Summary of Terms

Input sequence: xq, ..., Xt

Target sequence: yq, ..., yr

X1y eees XT Decoder P(Y; =)

yle 9y1‘—1

/

What are x; and y;?




Tokenizing Text

Tokenization is the task of taking text (or code or music) and turning it
into a sequence of discrete items, called tokens.




Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.
A vocabulary is the list of all available tokens.

Let's tokenize: “A hippopotamus ate my homework.”

Vocab Type Ex. length
Character-level [IAI' 1 l' Ihl' Iil' IpI, Ipl’ '0', Ipl’ IOI, Itl' Ial' Iml, Iul’ 'S" Il' Ial' Itl’ 'e', 1 I, ImI, lyl’ 1 I' Ihl' Iol' Iml' Iel' IWI' Iol' 31

lrl, Ikll |.I]
subword-level ['A, 'hip', '##tpop’, '#itota', '"##mus', 'ate’, 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate’, 'my', 'homework'] 5




Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.
A vocabulary is the list of all available tokens.

Let's tokenize: “A hippopotamus ate my homework.”

Vocab Type Ex. length

Character-level [IAI' 1 l' Ihl' Iil' IpI, Ipl’ '0', Ipl’ 'OI, Itl' Ial' Iml, Iul’ 'S" 1 l' Ial' ‘tl’ 'e', 1 I, ImI, lyl’ 1 I' lhl' Iol' Iml' Iel' IWI' Iol' 31
lrl, Ikl' |.I]

subword-level ['A, 'hip', '##tpop’, '#itota', '"##mus', 'ate’, 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate’, 'my', 'homework'] 5

What are the pros and cons of different tokenizers?

More on this in two lectures!




Turning Discrete Tokens into Continuous Vectors

Neural networks cannot operate on discrete tokens.

Instead, we build an embedding matrix which associates each token in the vocabulary
with a vector embedding.

Vocabulary » Embedding matrix
the [ ]

a [

vocab size

ny
| ]
embedding dimension

kitten] ]




Encoder Inputs and Outputs | E= P0G =

ylv"' 1yf—l

The encoder takes as input the vector
representations of each token in the input

sequence.
Vocabulary * Embedding matrix
the [ ] °
=
| | s
| |
: : embedding dimension
: :
kitten| ] 0) 0 0 0 0

The hippo ate my homework




Encoder Inputs and Outputs

The encoder outputs a sequence of
embeddings called hidden states.

Vocabulary * Embedding matrix
the | ]

a [

vocab size

RO AN —

embedding dimension

kitten] ]

X1y ooy XT W P(Y}Zl)

ylv--- 1yf—l

enc

Encoder

|
~
|

n|ui“
lIHI

0 432 2019 1234
The hippo ate m homework




Decoder Inputs and Outputs

The decoder takes as input the hidden states from
the encoder as well as the embeddings for the
tokens seen so far in the target sequence.

It outputs an embedding 9.

enc enc
hé hé

L1 1]

e

Encoder

432

2019

Ie T aIe

hippo

2 1234
1
T my homework

X1y e s XT w P(K:t)

Yis o Vi
4
Decoder /
75 2421

t |

Le hippotame




Decoder Inputs and Outputs | o] P =

yl':'“ 1y1—1

|deally, §, would be as close as possible to the
embedding of the true next token.

A

Y

Decoder /

2421

T 1

Le hippotame




Decoder Inputs and Outputs

We multiply the predicted embedding §, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

A

Y

I logits
vocab size

embedding
matrix E g,

2421

T 1

Le hippotame




Decoder Inputs and Outputs

We multiply the predicted embedding §, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

A

Y

I logits
— =
vocab size

-

embedding
matrix E g,

2421

T 1

Le hippotame




Decoder Inputs and Outputs

We multiply the predicted embedding §, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

exp(Ey¢[i])

P(Y; = i|X1.1) Y1:6-1) = 5 exp(ES.[T)
j




Decoder Inputs and Outputs

We multiply the predicted embedding §, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

EV.[i
P(Y: = i|X1.7,Y1:6-1) = Zj);zl()(;;’[tl[]i)])

Example: Suppose we are trying to predict the 5 word in the sequence “the dog
chased the”. We want to know the probability the next word is “cat”.

exp(score in logits for “cat”
P(Ys = “cat”|“the dog chase the”) = p( 5 ) = 0.321

normalization term




Loss Function: Negative Log Likelihood

T

L= —tZ:llOgP(Yt = "|X1.75 Y1:t—-1)




Loss Function: Negative Log Likelihood

T
L G
t=1

The probability the language model assigns to the true
t™ word in the target sequence.




Loss Function: Negative Log Likelihood

T
L = _t§1logP(Yt =[iYX1.75 ¥1:t-1)

The intlex of the true
t™ word in the target
sequence.




Loss Function: Negative Log Likelihood

T

L= —tZ:llOgP(Yt = "|X1.75 Y1:t—-1)

% log exp(Ey:[i"])
=1 2jexp(Ey:[j])

P 0T
P(Ye = i|X1.1) Y1:6-1) = ;22;(1)5’;'[1[]1')])
j t




Loss Function: Negative Log Likelihood

T
L=—%1logP(Y; =i"[X1.7,V1:6-1)

Ioglts
1]
I
b size exp(E¥.[i])
P(Y; =i|x = N
embedd ng (Fe = ¥ur Yae-a) = 2jexp(Ey.[j])
matri




Loss Function: Negative Log Likelihood
T
L= —tgllogp(yt = U X170 Y1:t-1)

T exp@@ D
_—
2085 g ®9 D

matrix E

9, Score for word at index i*

g Ioglts
=7 .' ?
vocab size _ eXp(Ei’t[i])
embedding I / PV = txur Yi-a) = Z]exp(Ef’tUD




Loss Function: Negative Log Likelihood

T

L= —tZ:llOgP(Yt = "|X1.75 Y1:t—-1)

%l_og exp(Ey.[i"])
t=1 ZieXp(Eyt@

P 0T
P(Ye = i|X1.1) Y1:6-1) = Ze.)::i;(;;’[l[]j)])
j t




Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

Y1 ---syt—lP(Yz =i)—>

Conditioned Language Model

X[y .eey XT m P, =i)—

Yis oo s Vi1

chosen word for
position #+1

sampling
agorithm

chosen word for
position f+1

sampling
agorithm




Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

. sampling chosen word for
Y '“’y"'P(K == Fagorithm < T position &1

Conditioned Language Model

. sampling chosen word for
X1y ooy XT m PY, =i)— agorithm ~ position t+1

yla---syf—l




Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

_ decoding chosen word for
y"""yt"P(Yr_l)_) method | position t1

Conditioned Language Model

X1,.eo, XT Decoder P, = i)— decoding /., chosen word for
method position t+1

yla---syf—l




Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

_ decoding chosen word for
y"""y"'P(Yr_l)_) strategy. || position t1

Conditioned Language Model

X1y ooy XT Decoder P, = i)— decoding ., chosen word for
strategy position f+1

yla---syf—l
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3. Decoding Strategies




How can we sample from

P(Y: = i|y1.t-1)?




How can we sample from P(Y; = ily;.;—1)7 ]

Option 1: Take argmaxP (Y, = i|yy._1) TYPE YOUR ANSWER INTO CHAT
l

Suppose our vocab consists of 4 words:
V = {apple, banana, orange, plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | ¥; = apple, Y, = apple) = 0.05
P(Y; = bananal|Y; = apple, ¥, = apple) = 0.65
P(Y; = orange|Y; = apple, Y, = apple) = 0.2

I vt P(Y; = plum |Y; = apple, ¥, = apple) = 0.1
If we sample with argmax, what word .
would get selected? If we sample with argmax, what word would get
a8 selected?

|(a)apple (b) banana (c)orange (d) plum




How can we sample from P(Y; = ily;.;—1)7

Option 1: Take argmiaxP(Yt = i|y1.4—1)

TYPE YOUR ANSWER INTO CHAT

Suppose our vocab consists of 4 words:
V = {apple, banana, orange, plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05
P(Y; = bananal ¥; = apple, Y, = apple) = 0.65
P(Y; = orangel| Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, ¥, = apple) = 0.1

If we sample with argmax, what word would get
selected?

|(a)apple (b) banana (c)orange (d) plum




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmaxP(Y; = i|yy.c_1) TYPE YOUR ANSWER INTO CHAT
l

. Suppose our vocab consists of 4 words:
Option 2: Randomly sample from the V = {apple, banana, orange, plum}
distribution returned by the model.
We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65
P(Y; = orange| Y; = apple, ¥, = apple) = 0.2

— - P(Y; = plum| Y; = apple, Y, = apple) = 0.1
With random sampling, what is the
probability we'll pick “banana”? With random sampling, what is the probability
- we'll pick “banana”?

(a) 0% (b)5% (c)65% (d)100%




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmaxP(Y; = i|yy.c_1) TYPE YOUR ANSWER INTO CHAT
l

. Suppose our vocab consists of 4 words:
Option 2: Randomly sample from the V = {apple, banana, orange, plum}

distribution returned by the model.

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65
P(Y; = orange| Y; = apple, ¥, = apple) = 0.2
P(Y; = plum| Y; = apple, ¥, = apple) = 0.1

With random sampling, what is the probability
we'll pick “banana”?

(a) 0% (b)5% (c)65% (d)100%




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmiaxP(Yt = i|y1.4—1)

Option 2: Randomly sample from the
distribution returned by the model.

Prompt: | set my cat down on the...

Problem with Random Sampling 0.05 -
Most tokens in the vocabulary get assigned very E 0.04
low probabilities but cumulatively, choosing any 5
o : : ~ 0.03 A
one of these low-probability tokens is pretty likely. =
In the example on the right, there is over a 29% < 0.02-
chance of choosing a token v with P(Y; = v) < 0.01. v 001 L
% 0.01 -
=
0.00 A

0 100 200 300 400 500

Vocab items sorted by likelihood




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmiaxP(Yt = i|y1.4—1)

Option 2: Randomly sample from the
distribution returned by the model.

Prompt: | set my cat down on the...

Problem with Random Sampling 0.05 -
Most tokens in the vocabulary get assigned very E 0.04
low probabilities but cumulatively, choosing any 5
o : : ~ 0.03 A
one of these low-probability tokens is pretty likely. =
In the example on the right, there is over a 29% < 0.02-
chance of choosing a token v with P(Y; = v) < 0.01. v 001 L
% 0.01 -
=
0.00

100 200 300 400 500
Vocab items sorted by/ikelihood

floor bed Web monkey




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmiaxP(Yt = i|y1.4—1)

Option 2: Randomly sample from the
distribution returned by the model.

Prompt: | set my cat down on the...

Problem with Random Sampling 0.05 -
Most tokens in the vocabulary get assigned very E 0.04 -

low probabilities but cumulatively, choosing any 5
o : : ~ 0.03 A

one of these low-probability tokens is pretty likely. =
In the example on the right, there is over a 29% < 0.02-

chance of choosing a token v with P(Y; = v) < 0.01. v 001 L

% 0.01 -

=
0.00 1

100 200 300 / 400 [ 500
Solution: modify the distribution returned by the Vocab items sorted by fikelihood
model to make the tokens In the tail less likely.

floor bed Web monkey




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmaxP (Y; = i|y1.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmiaxP(Yt = i|y1.4—1)
Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

With temperature = 0.5 With temperature = 1.0 With temperature = 1.5

i

o
H
)
H
o
H

©
)
o
w
o
W

o
=
o
=
o
=

Next token likelihood
o
N

Next token likelihood
o
N

Next token likelihood
o
N

N\

o
o
—_
o
o

o
o

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Vocab items sorted by likelihood Vocab items sorted by likelihood Vocab items sorted by likelihood




How can we sample from P(Y; = ily;.;—1)7

Option 1: Take argmiaxP(Yt = i|y1.4—1)
Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

exp(z;/T)

P(Y, =) =

TYPE YOUR ANSWER INTO
CHAT

Suppose our vocab consists of 4 words:
V = {apple, banana, orange, plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
P(Y; = apple| Y; = apple, ¥, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65

Y.jexp(z;/T)

Joinat menticom | use code 23169150 b P(Y3 == Orangel Yl - apple) Y2 = apple) = 0'2

What would the probability of selecting P(Y; = plum | ¥; = apple, Y, = apple) = 0.1
"banana” be if we use temperature

sampling and set T=co?

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = «?

(a) 0% (b)25% (c)65% (d)100%




How can we sample from P(Y; = ily;.;—1)7

Option 1: Take argmiaxP(Yt = i|y1.4—1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

With temperature = 100

© o o
N ) IS
1 1

e
i

Next token likelihood

o
o
1

0 100 200 300 400 500
Vocab items sorted by likelihood

TYPE YOUR ANSWER INTO
CHAT

Suppose our vocab consists of 4 words:
V = {apple, banana, orange, plum}

We have primed our LM with “apple apple” and

want to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple| Y; = apple, ¥, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65
P(Y; = orange| Y; = apple, Y, = apple) = 0.2
P(Y; = plum| Y; = apple, ¥, = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = 0?

(a) 0% (b)25% (c)65% (d)100%

P2,



How can we sample from P(Y; = ily;.;—1)7

Option 1: Take argmiaxP(Yt = i|y1.4—1)
Option 2: Randomly sample from the
distribution returned by the model.
Option 3: Randomly sample with
temperature.

exp(z;/T)
2.jexp(z;/T)

P(Y, =) =

i Menti

Join at menticom |usecode 21169150

What would the probability of selecting
“banana” be if we use temperature sampling
and set T=0.00001?

TYPE YOUR ANSWER INTO
CHAT

Suppose our vocab consists of 4 words:
V = {apple, banana, orange, plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple| Y; = apple, ¥, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65
P(Y; = orange| Y; = apple, Y, = apple) = 0.2
P(Y; = plum| Y; = apple, ¥, = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = 0.00001?

(a) 0% (b)25% (c)65% (d)100%
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Option 1: Take argmiaxP(Yt = i|y1.4—1)
Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

.. exp(z/T)
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As T approaches 0, random sampling with
temperature looks more and more like argmax.

TYPE YOUR ANSWER INTO
CHAT

Suppose our vocab consists of 4 words:
V = {apple, banana, orange, plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple| Y; = apple, ¥, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65
P(Y; = orange| Y; = apple, Y, = apple) = 0.2
P(Y; = plum| Y; = apple, ¥, = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = 0.00001?

(a) 0% (b)25% (c)65% (d)100%




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmaxP (Y; = i|y1.t—1)
l

Option 2: Randomly sample from the

. . . Prompt: | set my cat down on the...
distribution returned by the model. P Y -

0.05 A
Option 3: Randomly sample with 2 o000
temperature. =
Option 4: Introduce sparsity by = 0937
reassigning all probability mass to the £ 0.02
k most likely tokens. This is referred to % 0.01-
as top-k sampling. = oo L

0 100 200 300 400 500
Vocab items sorted by likelihood

Usually k between 10 and 50 is selected.




How can we sample from P(Y; = ily;.1-1)7

Option 1: Take argml_axP(Yt = i|y1.t—1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
k most likely tokens. This is referred to
as top-k sampling.

Option 5: Introduce sparsity by reassigning
all probability mass to the k; tokens which
form p% of the probability mass.

At each step, k¢ is chosen such that the total
probability of the k; most likely tokens is no
greater than the desired probability p.This is
referred to as nucleus sampling.




How can we sample from P(Y; = ily;.;—1)7 [

Option 1: Take argmiaxP(Yt = i|y1.4—1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
k most likely tokens. This is referred to
as top-k sampling.

Option 5: Introduce sparsity by reassigning
all probability mass to the k; tokens which
form p% of the probability mass.

At each step, k; is chosen such that the total
probability of the k; most likely tokens is no
greater than the desired probability p.This is
referred to as nucleus sampling.

Option 6: Use some version of beam
search.




Beam Search

Assumption: the best possible sequence to generate is the one with highest overall
sequence likelihood (according to themodel).

It is computationally intractable to search all possible sequences for the most likely one, so
instead we use beam search.

Beam search is a search algorithm that approximates finding the overall most likely
seqguence to generate.




Problems with Beam Search

It turns out for open-ended tasks like Beam Search Text is Less Surprising

dialog or story generation, optimizing

RN

for the sequence with the highest - Vi ]
possible P(xq, ..., x) isn't actually a L) y
great idea. LN
o 0.4
o Beam search generates text o2
that is much for likely than 0

human-written text 0 20 40 60 80 100

Timestep Beam Search

Human




Problems with Beam Search

It turns out for open-ended tasks like
dialog or story generation, optimizing
for the sequence with the highest
possible P(xq, ..., x) isn't actually a
great idea.

3.0

2.5

N
=)

o Beam search generates text
that is much for likely than
human-written text

Human Judgement

o When sequence likelihood is 1.0

too high, humans rate text

—-225 -200 -175 -150 -125 -100 -75 —-50 25
as bad. -




When to Use Beam Search

Your task is very narrow, i.e., there is only ~1 “correct” sequence your model should
generate.

« Examples: question answering, machine translation

You want to score possible generation with several signals of goodness, besides just
model likelyhoods.

You are using a language model thatisn't very good, and you don't trust its predicted
probabilities.




Decoding o

strate ) _ _
Param%yter: The Decoding k = vocab size

Strategy Tradeoff p=1

e

* Lacks diversity, with an over- » Has similar diversity of word use
representation of common words. to human writing.

* Contains few semantic errors. « Contains many semantic errors.

* Fools humans but not automatic + Fools automatic detection
detection systems. systems but not humans.




Other generation parameters you'll encounter

* Frequency penalty: Reduce the likelihood the model generates a token based on how
often it has occurred already.

« The more likely a token has occurred, the less likely it will be to occur in the future.

* Presence penalty: Reduce the likelihood the model generates a token based on
whether or not it has occurred already.

« Ifatoken occurs any number of times, it will be less likely to occur in the future.
+ Stopping criteria

« Stop after generating k tokens.

« Stop when a certain token is generated (for example, a period or a newline).
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Questions so far?

Carnegie Mellon University



4. Language Model Architectures




What are these encoder/decoder things?

a7?7?

e — =
x1,...,xT-—>< w Decoder |——>P(Y,:i)
L= T =

YViseoes Vi—1




Circa 2013: Recurrent neural networks

Generating Sequences With
Recurrent Neural Networks

Alex Graves
Department of Computer Science
University of Toronto
graves@cs.toronto.edu

Abstract

This paper shows how Long Short-term Memory recurrent neural net-
works can be used to generate complex sequences with long-range struc-
ture, simply by predicting one data point at a time. The approach is
demonstrated for text (where the data are discrete) and online handwrit-
ing (where the data are real-valued). It is then extended to handwriting
synthesis by allowing the network to condition its predictions on a text
sequence. The resulting system is able to generate highly realistic cursive
handwriting in a wide variety of styles.




Recurrent Neural Networks

P(y:0€1) P(y3l€2)

1. The decoder inputs a sequence of
embeddings.

Decoder




Recurrent Neural Networks

P(y:0€1) P(y3l€2)

_ _ 1. The decoder inputs a sequence of
Decoder / embeddings.

2. Inside the decoder, a recurrent unit
(aka RNN) inputs the previous
hidden state and the embedding for
the token being processed.

2. Initialize a hidden state h,




Recurrent Neural Networks

P(y:0€1) P(y3€;)

1. The decoder inputs a sequence of

Decoder embeddings.

2. Inside the decoder, a recurrent unit
(aka RNN) inputs the previous
hidden state and the embedding for
the token being processed.

3. The RNN outputs a predicted

embedding, and an updated hidden
state.

2. Initialize a hidden state h,




Recurrent Neural Networks

P(y 1)) P(ys|é2)
1. The decoder inputs a sequence of
embeddings.

Decoder

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

4, The first hidden state is typically
initialized with a zero vector.




Recurrent Neural Networks

P(y:0€1) P(y3€;)

Deco

> A

&

E €
probabilities
A = softmax =
vocab size

1. The decoder inputs a sequence of
embeddings.

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

4, The first hidden state is typically
initialized with a zero vector.




Recurrent Neural Networks

Computing the next hidden state:

For the first layer:

h% = RNN(WLh1yt + Wh1h1h%_1 + b%)

Decoder

For all subsequent layers:

hi = RNN(W, 1y, + Wyi-1,ihi™t + Wy, hi ) + bj)

Predicting an embedding for the next token in the
sequence:

L
& =be+ ¥ Wy hi

Each of the b and W are learned bias and weight
matrices.




What did the generated text look like?

The '"''Rebellion''' (''Hyerodent'') is [[literal]], related mild1¥ older than ol
d half sister, the music, and morrow been much more propellent. All those of [[H
amas (mass)|sausage trafﬁlcklng]]s were also known as [ETPIP class submarinel''S
ante'' at Serassim]]; ''Verra'' as 1865&amp;ndash;682&amp;ndash;831 is related t
0 ballistic missiles. While she viewed it friend of Halla equatorial weapons of
Tuscany, 1in EEFrance]], from vaccine homes to &quot;individual&quot;, amonﬂ [[sl
averylslaves]] (such as artistual selling of factories were renamed English habi
t of twelve years.)

By the 1978 Russian [[Turkeyl|Turkist]] capital city ceased by farmers and_the in
tention of navigation the ISBNs, all encoding EETransylvanla International Organ
isation for Transition Bankingl|Attiking others]] i1t is_in the westernmost placed
lines. This type of missile calculation maintains all %rgater proof was the [[
1990s]] as older adventures that never established a self-interested case. The n
ewcgmers were Prosecutors in child after the other weekend and capable function
used.

Holding may be typicallz largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, is not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).
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