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After successfully completing this task, you should be able to…

● Compare and contrast different models in the LLM ecosystem in order to determine the best 
model for any given task.

● Implement and train a Transformer-based language model from scratch in Pytorch.

● Utilize open-source libraries to finetune and do inference with popular pre-trained language 
models.

● Understand how to apply LLMs to a variety of downstream applications, and how decisions made 
during pre-training affect suitability for these tasks.

● Read and comprehend recent, academic papers on LLMs and have knowledge of the common 
terms used in them (alignment, scaling laws, RLHF, prompt engineering, instruction tuning, etc.).

● Design new methodologies to leverage existing large scale language models in novel ways.



Assessment

● Six homework assignments (60%)

○ To be completed Individually

○ Mixture of practical and comprehension-based questions

○ To be turned in via Gradescope

● One midterm (20%)

● One final exam (20%)



Homeworks

Homework 1:
● Implement a Transformer from scratch 

Implement a tokenizer
● Inference with the HuggingFace API

Homework 2:
● Understand pre-training data curation 

decisions
● Implement a pre-training data pipeline

Homework 3:
● Retrieval-augmented generation
● Tool-use

Homework 4:
● How to choose between models
● Measuring and reducing bias

Homework 5:
● Improving training efficiency

Homework 6 (mini-project):
● Apply techniques learned in class to a task 

of your choice



What we expect from students taking this class:

● Fluent in Python

● Comfortable with with a Python deep learning framework such as PyTorch

● Able to commit ~9 hours per week to homework

● Have already taken courses in NLP and ML, or wiling to put in extra time to self-learn needed 

concepts as they come up



Waitlist Policy

● This is a popular class, but we expect most of you who are on the waitlist, if you stick around, will 

eventually get in.

● Come to class. Start on Homework 1.

● Let us know if you have done all but still cannot get in near Sep. 10th.



Daphne Ippolito

Large Language Models: Methods and Applications

Language Model Basics



Agenda

1. What is a Language Model?

2. Building Blocks of Language Models

3. Decoding Strategies

4. Language Model Architectures



1. What is a Language Model?



What is a Language Model?

A language model is any model that outputs a probability distribution over the next token* 

in a sequence given the previous tokens in the sequence, that is: 𝑃 𝑦𝑡 𝑦1:𝑡−1 .

Historically, language models were statistical n-gram models. Instead of taking into account 

the full history of the sequence, they approximated this history by just looking back a few 

words. 

*For now, let’s assume token = word. We’ll come back this.



What is a Language Model?

Example: Suppose we are building a statistical language model using a text corpus, C. We 

observe that the word “apple” follows the words “eat the” 2% of the times that “eat the” 

occurs in C.

This means we’d set:

P(“apple” | “eat the”) = 0.02.

Since “eat the apple” is three words, we’d call this a 3-gram model. 



Language models are not
inherently generative.



Computing Sequence Likelihood

Language models output the likelihood of the next word: 𝑃 𝑦𝑡 𝑦1:𝑡−1 .

Often we will talk about the likelihood of an entire sequence 𝑃 𝑌 = 𝑃 𝑦1, 𝑦1, … , 𝑦𝑇 .



Computing Sequence Likelihood

Sequence likelihood can be computed from an LM using the chain rule:

P([“I”, “eat”, “the”, “apple”]) = 

P(“apple” | [“I”,  “eat”,  “the”])  * P(“the” | [“I”,  “eat”])  * P(“eat” | [“I”])  * P(“I”])

In math:
𝑃 𝑌 = 𝑃 𝑦1 , 𝑦2 , … , 𝑦𝑇 = 𝑃 𝑦𝑇 𝑦1:𝑇−1 × 𝑃 𝑦𝑇−1 𝑦1:𝑇−2 × ⋯× 𝑃 𝑦1 start of sequence



Neural Language Models: Conditioned v. Unconditioned

Unconditioned: 𝑃(𝑌)

At each step the LM predicts:

𝑃(𝑦𝑡 |𝑦1:𝑡−1)

Examples:

• GPT-2 / GPT-3

• LLaMA

Conditioned: 𝑃(𝑌|𝑋)

At each step the LM predicts: 𝑃(𝑦𝑡 |𝑦1:𝑡−1, 𝑥1:𝑇)

Examples

• T5

• Most machine translation models

Sometimes called sequence-to-sequence or 

seq2seq models.

Neural language models can either be designed to just predict the next word given 
the previous ones, or they can be designed to predict the next word given the 
previous ones and some additional conditioning sequence.



2. Building Blocks of Language Models



Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder.
Conditioned ones have an encoder and a decoder.



Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder. Conditioned ones 
have an encoder and a decoder.

There are also encoder-
only models, but they 

aren’t traditional 
language models.



Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into one for 
an encoder-decoder architecture, and vice-versa.

TASK: Continue the sequence.

Decoder-only version:

P(Y=“Once upon a time there lived a dreadful ogre.”)

Encoder-decoder version:

P(Y=“lived a dreadful ogre.” | X=“Once upon a time there”)



Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into one for 
an encoder-decoder architecture, and vice-versa.

TASK: Translate from English to French.

Decoder-only version:

P(Y=“English: The hippo ate my homework. French: L'hippopotame a mangé mes devoirs.”)

Encoder-decoder version:

P(Y=“L'hippopotame a mangé mes devoirs.” | X=“The hippo ate my homework.”)



Summary of Terms You Should Know

Input sequence: 𝑥1, … , 𝑥𝑇
Target sequence: 𝑦1, … , 𝑦𝑇



Summary of Terms You Should Know

Input sequence: 𝑥1, … , 𝑥𝑇
Target sequence: 𝑦1, … , 𝑦𝑇

𝑃Θ(𝑌𝑡 = 𝑖)

Represents the 
parameters of the neural 

network.

Or sometimes…



Summary of Terms You Should Know

Input sequence: 𝑥1, … , 𝑥𝑇
Target sequence: 𝑦1, … , 𝑦𝑇

𝑃(𝑌𝑡 = 𝑖|𝑦1, … , 𝑦𝑡−1;
𝑥1, … , 𝑥𝑇; Θ)

𝑃Θ(𝑌𝑡 = 𝑖)

Or sometimes…

Or sometimes…



Summary of Terms

Input sequence: 𝑥1, … , 𝑥𝑇

Target sequence: 𝑦1, … , 𝑦𝑇

What are 𝑥𝑖 and 𝑦𝑖?



Tokenizing Text

Tokenization is the task of taking text (or code or music) and turning it 
into a sequence of discrete items, called tokens.



Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.

A vocabulary is the list of all available tokens.

Let’s tokenize: “A hippopotamus ate my homework.”

Vocab Type Example Ex. length

character-level ['A', ' ', 'h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm', 'u', 's', ' ', 'a', 't', 'e', ' ', 'm', 'y', ' ', 'h', 'o', 'm', 'e', 'w', 'o', 
'r', 'k', '.’]

31

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5



Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.

A vocabulary is the list of all available tokens.

Let’s tokenize: “A hippopotamus ate my homework.”

Vocab Type Example Ex. length

character-level ['A', ' ', 'h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm', 'u', 's', ' ', 'a', 't', 'e', ' ', 'm', 'y', ' ', 'h', 'o', 'm', 'e', 'w', 'o', 
'r', 'k', '.’]

31

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5

What are the pros and cons of different tokenizers?

More on this in two lectures!



Turning Discrete Tokens into Continuous Vectors

Neural networks cannot operate on discrete tokens.

Instead, we build an embedding matrix which associates each token in the vocabulary 
with a vector embedding.



Encoder Inputs and Outputs

The encoder takes as input the vector 
representations of each token in the input 
sequence.



Encoder Inputs and Outputs

The encoder outputs a sequence of 
embeddings called hidden states.

𝐡1
enc 𝐡𝑇

enc



Decoder Inputs and Outputs

The decoder takes as input the hidden states from 
the encoder as well as the embeddings for the 
tokens seen so far in the target sequence.

It outputs an embedding ො𝐲𝑡.

𝐡1
enc 𝐡𝑇

enc

ො𝐲𝑡



Decoder Inputs and Outputs

Ideally, ො𝐲𝑡 would be as close as possible to the 
embedding of the true next token.

ො𝐲𝑡



Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

embedding
matrix 𝐄 ො𝐲𝑡

ො𝐲𝑡



Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

embedding
matrix 𝐄 ො𝐲𝑡

ො𝐲𝑡

Score for “dog” Score for “apple”



Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇, 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])



Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇, 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

𝑃 𝑌5 = “𝑐𝑎𝑡” “𝑡ℎ𝑒 𝑑𝑜𝑔 𝑐ℎ𝑎𝑠𝑒 𝑡ℎ𝑒” =
exp score in logits for “𝑐𝑎𝑡”

normalization term
= 0.321

Example: Suppose we are trying to predict the 5th word in the sequence “the dog 
chased the”. We want to know the probability the next word is “cat”. 



ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

Loss Function: Negative Log Likelihood



ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

The probability the language model assigns to the true 

𝑡th word in the target sequence.

Loss Function: Negative Log Likelihood



ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

The index of the true 

𝑡th word in the target 

sequence.

Loss Function: Negative Log Likelihood



ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

Loss Function: Negative Log Likelihood



ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

Loss Function: Negative Log Likelihood

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

embedding

matrix 𝐄

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

ො𝐲𝑡



ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

embedding

matrix 𝐄
Score for word at index 𝑖∗

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Loss Function: Negative Log Likelihood

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

ො𝐲𝑡



= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

= − ∑
𝑡=1

𝑇

𝐄ො𝐲𝑡[𝑖
∗]

Loss Function: Negative Log Likelihood

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:



Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1). 



Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1). 



Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1). 

decoding
method

decoding
method



Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1). 

decoding
strategy

decoding
strategy



Questions so far?

61



3. Decoding Strategies



How can we sample from  
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)?



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1) TY PE Y OU R ANSW ER INTO  CH AT

Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05

𝑃(𝑌3 = banana|𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃(𝑌3 = orange|𝑌1 = apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1 = apple, 𝑌2 = apple) = 0.1

If we sample with argmax, what word would get 
selected?

(a) apple   (b) banana    (c) orange    (d) plum



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

TY PE Y OU R ANSW ER INTO  CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05

𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1 = apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1 = apple, 𝑌2 = apple) = 0.1

If we sample with argmax, what word would get 
selected?

(a) apple   (b) banana    (c) orange    (d) plum

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

TY PE Y OU R ANSW ER INTO  CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

With random sampling, what is the probability 
we’ll pick “banana”?

(a) 0%   (b) 5%    (c) 65%   (d) 100%

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

TY PE Y OU R ANSW ER INTO  CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
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𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

With random sampling, what is the probability 
we’ll pick “banana”?

(a) 0%   (b) 5%    (c) 65%   (d) 100%



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very 
low probabilities but cumulatively, choosing any 
one of these low-probability tokens is pretty likely. 
In the example on the right, there is over a 29% 
chance of choosing a token v with P(Yt = v) ≤ 0.01.



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very 
low probabilities but cumulatively, choosing any 
one of these low-probability tokens is pretty likely. 
In the example on the right, there is over a 29% 
chance of choosing a token v with P(Yt = v) ≤ 0.01.

floor bed monkeyWeb



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very 
low probabilities but cumulatively, choosing any 
one of these low-probability tokens is pretty likely. 
In the example on the right, there is over a 29% 
chance of choosing a token v with P(Yt = v) ≤ 0.01.

floor bed

Solution: modify the distribution returned by the 

model to make the tokens In the tail less likely.
monkeyWeb



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)
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𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.



How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)
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𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)
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Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.

TY PE Y OU R ANSW ER INTO  
CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and 
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

What would the probability of selecting 
“banana” be if we use temperature sampling 
and set T = 0.00001?

(a) 0%   (b) 25%   (c) 65%   (d) 100%

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)

How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?



Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.

TY PE Y OU R ANSW ER INTO  
CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and 
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

What would the probability of selecting 
“banana” be if we use temperature sampling 
and set T = 0.00001?

(a) 0%   (b) 25%   (c) 65%   (d) 100%

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)

As T approaches 0, random sampling with 

temperature looks more and more like argmax.
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Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.

Option 4: Introduce sparsity by 
reassigning all probability mass to the 
𝑘 most likely tokens. This is referred to 
as top-𝑘 sampling.

Usually 𝒌 between 10 and 50 is selected.
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Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.

Option 4: Introduce sparsity by 
reassigning all probability mass to the 
𝑘 most likely tokens. This is referred to 
as top-𝑘 sampling.

Option 5: Introduce sparsity by reassigning 
all probability mass to the kt tokens which 
form 𝑝% of the probability mass.

At each step, kt is chosen such that the total 
probability of the kt most likely tokens is no 
greater than the desired probability p.This is 
referred to as nucleus sampling.
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Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the 
distribution returned by the model.

Option 3: Randomly sample with 
temperature.

Option 4: Introduce sparsity by 
reassigning all probability mass to the 
𝑘 most likely tokens. This is referred to 
as top-𝑘 sampling.

Option 5: Introduce sparsity by reassigning 
all probability mass to the kt tokens which 
form 𝑝% of the probability mass.

At each step, kt is chosen such that the total 
probability of the kt most likely tokens is no 
greater than the desired probability p.This is 
referred to as nucleus sampling.

Option 6: Use some version of beam 
search.

How can we sample from  𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?



Beam Search

Assumption: the best possible sequence to generate is the one with highest overall 
sequence likelihood (according to themodel).

It is computationally intractable to search all possible sequences for the most likely one, so 
instead we use beam search.

Beam search is a search algorithm that approximates finding the overall most likely 
sequence to generate.



Problems with Beam Search

It turns out for open-ended tasks like 
dialog or story generation, optimizing 
for the sequence with the highest 
possible 𝑃(𝑥1, … , 𝑥𝑇) isn’t actually a 
great idea.

○ Beam search generates text 
that is much for likely than 
human-written text



Problems with Beam Search

It turns out for open-ended tasks like 
dialog or story generation, optimizing 
for the sequence with the highest 
possible 𝑃(𝑥1, … , 𝑥𝑇) isn’t actually a 
great idea.

○ Beam search generates text 
that is much for likely than 
human-written text

○ When sequence likelihood is 
too high, humans rate text 
as bad.



When to Use Beam Search

• Your task is very narrow, i.e., there is only ~1 “correct” sequence your model should 
generate.

• Examples: question answering, machine translation

• You want to score possible generation with several signals of goodness, besides just 
model likelyhoods.

• You are using a language model that isn’t very good, and you don’t trust its predicted 
probabilities.





Other generation parameters you’ll encounter

• Frequency penalty: Reduce the likelihood the model generates a token based on how 
often it has occurred already.

• The more likely a token has occurred, the less likely it will be to occur in the future.

• Presence penalty: Reduce the likelihood the model generates a token based on 
whether or not it has occurred already.

• If a token occurs any number of times, it will be less likely to occur in the future.

• Stopping criteria

• Stop after generating k tokens.

• Stop when a certain token is generated (for example, a period or a newline).



Questions so far?

93



4. Language Model Architectures



What are these encoder/decoder things?

???



Circa 2013: Recurrent neural networks
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Recurrent Neural Networks

1. The decoder inputs a sequence of 
embeddings.

2. The RNN inputs the previous hidden 
state and the embedding for the token 
being processed.

3. The RNN outputs a predicted 
embedding, and an updated hidden 
state.

4. The first hidden state is typically 
initialized with a zero vector.



Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ1𝐲𝐭 + 𝐖ℎ1ℎ1𝐡𝑡−1

1 + 𝐛ℎ
1 )

For all subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ𝑙𝐲𝐭 + 𝐖ℎ𝑙−1ℎ𝑙𝐡𝑡

𝑙−1 + 𝐖ℎ𝑙ℎ𝑙𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙 )

Predicting an embedding for the next token in the 
sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + ∑
𝑙=1

𝐿

𝐖ℎ𝑙𝑒𝐡𝑡
𝑙

Each of the 𝐛 and 𝐖 are learned bias and weight 
matrices.

Recurrent Neural Networks



What did the generated text look like?
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