
Daphne Ippolito and Chenyan Xiong

Large Language Models: Methods and Applications

Class Overview

cmu-llms.org

Instructors

Chenyan Xiong
Office hours: Thursdays 3:30-4
GHC 6409

Chenyan Xiong
Office hours: Tuesdays 3:45-4:15
GHC 6407

Plus guest lectures industry experts!

Teaching Assistants

How to reach us

Questions about the lecture or homework material:
Piazza or office hours.

General logistics questions:
Piazza or office hours or email to llms-11-667@andrew.cmu.edu.

Questions about specific situations (missing class, grades, etc.):
Professor office hours or private Piazza post or email to llms-11-667@andrew.cmu.edu.

Emails sent to individual TAs or instructors will be ignored.

mailto:llms-11-667@andrew.cmu.edu
mailto:llms-11-667@andrew.cmu.edu

SURVEY

After successfully completing this task, you should be able to…

● Compare and contrast different models in the LLM ecosystem in order to determine the best
model for any given task.

● Implement and train a Transformer-based language model from scratch in Pytorch.

● Utilize open-source libraries to finetune and do inference with popular pre-trained language
models.

● Understand how to apply LLMs to a variety of downstream applications, and how decisions made
during pre-training affect suitability for these tasks.

● Read and comprehend recent, academic papers on LLMs and have knowledge of the common
terms used in them (alignment, scaling laws, RLHF, prompt engineering, instruction tuning, etc.).

● Design new methodologies to leverage existing large scale language models in novel ways.

Assessment

● Six homework assignments (60%)

○ To be completed Individually

○ Mixture of practical and comprehension-based questions

○ To be turned in via Gradescope

● One midterm (20%)

● One final exam (20%)

Homeworks

Homework 1:
● Implement a Transformer from scratch

Implement a tokenizer
● Inference with the HuggingFace API

Homework 2:
● Understand pre-training data curation

decisions
● Implement a pre-training data pipeline

Homework 3:
● Retrieval-augmented generation
● Tool-use

Homework 4:
● How to choose between models
● Measuring and reducing bias

Homework 5:
● Improving training efficiency

Homework 6 (mini-project):
● Apply techniques learned in class to a task

of your choice

What we expect from students taking this class:

● Fluent in Python

● Comfortable with with a Python deep learning framework such as PyTorch

● Able to commit ~9 hours per week to homework

● Have already taken courses in NLP and ML, or wiling to put in extra time to self-learn needed

concepts as they come up

Waitlist Policy

● This is a popular class, but we expect most of you who are on the waitlist, if you stick around, will

eventually get in.

● Come to class. Start on Homework 1.

● Let us know if you have done all but still cannot get in near Sep. 10th.

Daphne Ippolito

Large Language Models: Methods and Applications

Language Model Basics

Agenda

1. What is a Language Model?

2. Building Blocks of Language Models

3. Decoding Strategies

4. Language Model Architectures

1. What is a Language Model?

What is a Language Model?

A language model is any model that outputs a probability distribution over the next token*

in a sequence given the previous tokens in the sequence, that is: 𝑃 𝑦𝑡 𝑦1:𝑡−1 .

Historically, language models were statistical n-gram models. Instead of taking into account

the full history of the sequence, they approximated this history by just looking back a few

words.

*For now, let’s assume token = word. We’ll come back this.

What is a Language Model?

Example: Suppose we are building a statistical language model using a text corpus, C. We

observe that the word “apple” follows the words “eat the” 2% of the times that “eat the”

occurs in C.

This means we’d set:

P(“apple” | “eat the”) = 0.02.

Since “eat the apple” is three words, we’d call this a 3-gram model.

Language models are not
inherently generative.

Computing Sequence Likelihood

Language models output the likelihood of the next word: 𝑃 𝑦𝑡 𝑦1:𝑡−1 .

Often we will talk about the likelihood of an entire sequence 𝑃 𝑌 = 𝑃 𝑦1, 𝑦1, … , 𝑦𝑇 .

Computing Sequence Likelihood

Sequence likelihood can be computed from an LM using the chain rule:

P([“I”, “eat”, “the”, “apple”]) =

P(“apple” | [“I”, “eat”, “the”]) * P(“the” | [“I”, “eat”]) * P(“eat” | [“I”]) * P(“I”])

In math:
𝑃 𝑌 = 𝑃 𝑦1 , 𝑦2 , … , 𝑦𝑇 = 𝑃 𝑦𝑇 𝑦1:𝑇−1 × 𝑃 𝑦𝑇−1 𝑦1:𝑇−2 × ⋯× 𝑃 𝑦1 start of sequence

Neural Language Models: Conditioned v. Unconditioned

Unconditioned: 𝑃(𝑌)

At each step the LM predicts:

𝑃(𝑦𝑡 |𝑦1:𝑡−1)

Examples:

• GPT-2 / GPT-3

• LLaMA

Conditioned: 𝑃(𝑌|𝑋)

At each step the LM predicts: 𝑃(𝑦𝑡 |𝑦1:𝑡−1, 𝑥1:𝑇)

Examples

• T5

• Most machine translation models

Sometimes called sequence-to-sequence or

seq2seq models.

Neural language models can either be designed to just predict the next word given
the previous ones, or they can be designed to predict the next word given the
previous ones and some additional conditioning sequence.

2. Building Blocks of Language Models

Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder.
Conditioned ones have an encoder and a decoder.

Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder. Conditioned ones
have an encoder and a decoder.

There are also encoder-
only models, but they

aren’t traditional
language models.

Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into one for
an encoder-decoder architecture, and vice-versa.

TASK: Continue the sequence.

Decoder-only version:

P(Y=“Once upon a time there lived a dreadful ogre.”)

Encoder-decoder version:

P(Y=“lived a dreadful ogre.” | X=“Once upon a time there”)

Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into one for
an encoder-decoder architecture, and vice-versa.

TASK: Translate from English to French.

Decoder-only version:

P(Y=“English: The hippo ate my homework. French: L'hippopotame a mangé mes devoirs.”)

Encoder-decoder version:

P(Y=“L'hippopotame a mangé mes devoirs.” | X=“The hippo ate my homework.”)

Summary of Terms You Should Know

Input sequence: 𝑥1, … , 𝑥𝑇
Target sequence: 𝑦1, … , 𝑦𝑇

Summary of Terms You Should Know

Input sequence: 𝑥1, … , 𝑥𝑇
Target sequence: 𝑦1, … , 𝑦𝑇

𝑃Θ(𝑌𝑡 = 𝑖)

Represents the
parameters of the neural

network.

Or sometimes…

Summary of Terms You Should Know

Input sequence: 𝑥1, … , 𝑥𝑇
Target sequence: 𝑦1, … , 𝑦𝑇

𝑃(𝑌𝑡 = 𝑖|𝑦1, … , 𝑦𝑡−1;
𝑥1, … , 𝑥𝑇; Θ)

𝑃Θ(𝑌𝑡 = 𝑖)

Or sometimes…

Or sometimes…

Summary of Terms

Input sequence: 𝑥1, … , 𝑥𝑇

Target sequence: 𝑦1, … , 𝑦𝑇

What are 𝑥𝑖 and 𝑦𝑖?

Tokenizing Text

Tokenization is the task of taking text (or code or music) and turning it
into a sequence of discrete items, called tokens.

Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.

A vocabulary is the list of all available tokens.

Let’s tokenize: “A hippopotamus ate my homework.”

Vocab Type Example Ex. length

character-level ['A', ' ', 'h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm', 'u', 's', ' ', 'a', 't', 'e', ' ', 'm', 'y', ' ', 'h', 'o', 'm', 'e', 'w', 'o',
'r', 'k', '.’]

31

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5

Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.

A vocabulary is the list of all available tokens.

Let’s tokenize: “A hippopotamus ate my homework.”

Vocab Type Example Ex. length

character-level ['A', ' ', 'h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm', 'u', 's', ' ', 'a', 't', 'e', ' ', 'm', 'y', ' ', 'h', 'o', 'm', 'e', 'w', 'o',
'r', 'k', '.’]

31

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5

What are the pros and cons of different tokenizers?

More on this in two lectures!

Turning Discrete Tokens into Continuous Vectors

Neural networks cannot operate on discrete tokens.

Instead, we build an embedding matrix which associates each token in the vocabulary
with a vector embedding.

Encoder Inputs and Outputs

The encoder takes as input the vector
representations of each token in the input
sequence.

Encoder Inputs and Outputs

The encoder outputs a sequence of
embeddings called hidden states.

𝐡1
enc 𝐡𝑇

enc

Decoder Inputs and Outputs

The decoder takes as input the hidden states from
the encoder as well as the embeddings for the
tokens seen so far in the target sequence.

It outputs an embedding ො𝐲𝑡.

𝐡1
enc 𝐡𝑇

enc

ො𝐲𝑡

Decoder Inputs and Outputs

Ideally, ො𝐲𝑡 would be as close as possible to the
embedding of the true next token.

ො𝐲𝑡

Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

embedding
matrix 𝐄 ො𝐲𝑡

ො𝐲𝑡

Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

embedding
matrix 𝐄 ො𝐲𝑡

ො𝐲𝑡

Score for “dog” Score for “apple”

Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇, 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Decoder Inputs and Outputs

We multiply the predicted embedding ො𝐲𝑡 by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇, 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

𝑃 𝑌5 = “𝑐𝑎𝑡” “𝑡ℎ𝑒 𝑑𝑜𝑔 𝑐ℎ𝑎𝑠𝑒 𝑡ℎ𝑒” =
exp score in logits for “𝑐𝑎𝑡”

normalization term
= 0.321

Example: Suppose we are trying to predict the 5th word in the sequence “the dog
chased the”. We want to know the probability the next word is “cat”.

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

Loss Function: Negative Log Likelihood

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

The probability the language model assigns to the true

𝑡th word in the target sequence.

Loss Function: Negative Log Likelihood

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

The index of the true

𝑡th word in the target

sequence.

Loss Function: Negative Log Likelihood

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

Loss Function: Negative Log Likelihood

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

Loss Function: Negative Log Likelihood

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

embedding

matrix 𝐄

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

ො𝐲𝑡

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

embedding

matrix 𝐄
Score for word at index 𝑖∗

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Loss Function: Negative Log Likelihood

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

ො𝐲𝑡

= − ∑
𝑡=1

𝑇

log
exp(𝐄ො𝐲𝑡[𝑖

∗])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

ℒ = − ∑
𝑡=1

𝑇

log𝑃(𝑌𝑡 = 𝑖∗|𝐱1:𝑇, 𝐲1:𝑡−1)

= − ∑
𝑡=1

𝑇

𝐄ො𝐲𝑡[𝑖
∗]

Loss Function: Negative Log Likelihood

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇 , 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

∑𝑗exp(𝐄ො𝐲𝑡[𝑗])

Recall:

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1).

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1).

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1).

decoding
method

decoding
method

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution 𝑃(𝑌𝑡 = 𝑖|𝑦1:𝑡−1).

decoding
strategy

decoding
strategy

Questions so far?

61

3. Decoding Strategies

How can we sample from
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)?

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1) TY PE Y OU R ANSW ER INTO CH AT

Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05

𝑃(𝑌3 = banana|𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃(𝑌3 = orange|𝑌1 = apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1 = apple, 𝑌2 = apple) = 0.1

If we sample with argmax, what word would get
selected?

(a) apple (b) banana (c) orange (d) plum

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

TY PE Y OU R ANSW ER INTO CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05

𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1 = apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1 = apple, 𝑌2 = apple) = 0.1

If we sample with argmax, what word would get
selected?

(a) apple (b) banana (c) orange (d) plum

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

TY PE Y OU R ANSW ER INTO CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

With random sampling, what is the probability
we’ll pick “banana”?

(a) 0% (b) 5% (c) 65% (d) 100%

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

TY PE Y OU R ANSW ER INTO CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana, orange,plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

With random sampling, what is the probability
we’ll pick “banana”?

(a) 0% (b) 5% (c) 65% (d) 100%

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very
low probabilities but cumulatively, choosing any
one of these low-probability tokens is pretty likely.
In the example on the right, there is over a 29%
chance of choosing a token v with P(Yt = v) ≤ 0.01.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very
low probabilities but cumulatively, choosing any
one of these low-probability tokens is pretty likely.
In the example on the right, there is over a 29%
chance of choosing a token v with P(Yt = v) ≤ 0.01.

floor bed monkeyWeb

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned very
low probabilities but cumulatively, choosing any
one of these low-probability tokens is pretty likely.
In the example on the right, there is over a 29%
chance of choosing a token v with P(Yt = v) ≤ 0.01.

floor bed

Solution: modify the distribution returned by the

model to make the tokens In the tail less likely.
monkeyWeb

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

TY PE Y OU R ANSW ER INTO
CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = ∞?

(a) 0% (b) 25% (c) 65% (d) 100%

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

TY PE Y OU R ANSW ER INTO
CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = ∞?

(a) 0% (b) 25% (c) 65% (d) 100%

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

TY PE Y OU R ANSW ER INTO
CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = 0.00001?

(a) 0% (b) 25% (c) 65% (d) 100%

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

TY PE Y OU R ANSW ER INTO
CH AT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌3 = apple 𝑌1 = apple, 𝑌2 = apple) = 0.05
𝑃 𝑌3 = banana 𝑌1 = apple, 𝑌2 = apple) = 0.65
𝑃 𝑌3 = orange 𝑌1= apple, 𝑌2 = apple) = 0.2
𝑃 𝑌3 = plum 𝑌1= apple, 𝑌2 = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = 0.00001?

(a) 0% (b) 25% (c) 65% (d) 100%

𝑃(𝑌𝑡 = 𝑖) =
exp(𝑧𝑖/𝑇)

∑𝑗exp(𝑧𝑗/𝑇)

As T approaches 0, random sampling with

temperature looks more and more like argmax.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
𝑘 most likely tokens. This is referred to
as top-𝑘 sampling.

Usually 𝒌 between 10 and 50 is selected.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
𝑘 most likely tokens. This is referred to
as top-𝑘 sampling.

Option 5: Introduce sparsity by reassigning
all probability mass to the kt tokens which
form 𝑝% of the probability mass.

At each step, kt is chosen such that the total
probability of the kt most likely tokens is no
greater than the desired probability p.This is
referred to as nucleus sampling.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Option 1: Take argmax
𝑖
𝑃(𝑌𝑡 = 𝑖|𝐲1:𝑡−1)

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
𝑘 most likely tokens. This is referred to
as top-𝑘 sampling.

Option 5: Introduce sparsity by reassigning
all probability mass to the kt tokens which
form 𝑝% of the probability mass.

At each step, kt is chosen such that the total
probability of the kt most likely tokens is no
greater than the desired probability p.This is
referred to as nucleus sampling.

Option 6: Use some version of beam
search.

How can we sample from 𝑃 𝑌𝑡 = 𝑖 𝐲1:𝑡−1 ?

Beam Search

Assumption: the best possible sequence to generate is the one with highest overall
sequence likelihood (according to themodel).

It is computationally intractable to search all possible sequences for the most likely one, so
instead we use beam search.

Beam search is a search algorithm that approximates finding the overall most likely
sequence to generate.

Problems with Beam Search

It turns out for open-ended tasks like
dialog or story generation, optimizing
for the sequence with the highest
possible 𝑃(𝑥1, … , 𝑥𝑇) isn’t actually a
great idea.

○ Beam search generates text
that is much for likely than
human-written text

Problems with Beam Search

It turns out for open-ended tasks like
dialog or story generation, optimizing
for the sequence with the highest
possible 𝑃(𝑥1, … , 𝑥𝑇) isn’t actually a
great idea.

○ Beam search generates text
that is much for likely than
human-written text

○ When sequence likelihood is
too high, humans rate text
as bad.

When to Use Beam Search

• Your task is very narrow, i.e., there is only ~1 “correct” sequence your model should
generate.

• Examples: question answering, machine translation

• You want to score possible generation with several signals of goodness, besides just
model likelyhoods.

• You are using a language model that isn’t very good, and you don’t trust its predicted
probabilities.

Other generation parameters you’ll encounter

• Frequency penalty: Reduce the likelihood the model generates a token based on how
often it has occurred already.

• The more likely a token has occurred, the less likely it will be to occur in the future.

• Presence penalty: Reduce the likelihood the model generates a token based on
whether or not it has occurred already.

• If a token occurs any number of times, it will be less likely to occur in the future.

• Stopping criteria

• Stop after generating k tokens.

• Stop when a certain token is generated (for example, a period or a newline).

Questions so far?

93

4. Language Model Architectures

What are these encoder/decoder things?

???

Circa 2013: Recurrent neural networks

Recurrent Neural Networks

1. The decoder inputs a sequence of
embeddings.

Recurrent Neural Networks

2. Initialize a hidden state 𝐡0

1. The decoder inputs a sequence of
embeddings.

2. Inside the decoder, a recurrent unit
(aka RNN) inputs the previous
hidden state and the embedding for
the token being processed.

Recurrent Neural Networks

2. Initialize a hidden state 𝐡0

1. The decoder inputs a sequence of
embeddings.

2. Inside the decoder, a recurrent unit
(aka RNN) inputs the previous
hidden state and the embedding for
the token being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

Recurrent Neural Networks

1. The decoder inputs a sequence of
embeddings.

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

4. The first hidden state is typically
initialized with a zero vector.

Recurrent Neural Networks

1. The decoder inputs a sequence of
embeddings.

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

4. The first hidden state is typically
initialized with a zero vector.

Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ1𝐲𝐭 + 𝐖ℎ1ℎ1𝐡𝑡−1

1 + 𝐛ℎ
1)

For all subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ𝑙𝐲𝐭 + 𝐖ℎ𝑙−1ℎ𝑙𝐡𝑡

𝑙−1 + 𝐖ℎ𝑙ℎ𝑙𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙)

Predicting an embedding for the next token in the
sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + ∑
𝑙=1

𝐿

𝐖ℎ𝑙𝑒𝐡𝑡
𝑙

Each of the 𝐛 and 𝐖 are learned bias and weight
matrices.

Recurrent Neural Networks

What did the generated text look like?

	Slide 1: Class Overview
	Slide 2: cmu-llms.org
	Slide 3: Instructors
	Slide 4: Teaching Assistants
	Slide 5: How to reach us
	Slide 6: SURVEY
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13: After successfully completing this task, you should be able to…
	Slide 14: Assessment
	Slide 15: Homeworks
	Slide 16: What we expect from students taking this class:
	Slide 17: Waitlist Policy
	Slide 18: Language Model Basics
	Slide 19: Agenda
	Slide 20: 1. What is a Language Model?
	Slide 21: What is a Language Model?
	Slide 22: What is a Language Model?
	Slide 23: Language models are not inherently generative.
	Slide 24: Computing Sequence Likelihood
	Slide 25: Computing Sequence Likelihood
	Slide 26: Neural Language Models: Conditioned v. Unconditioned
	Slide 27: 2. Building Blocks of Language Models
	Slide 28: Neural Language Models: Conditioned v. Unconditioned
	Slide 29: Neural Language Models: Conditioned v. Unconditioned
	Slide 30: Neural Language Models: Conditioned v. Unconditioned
	Slide 31: Neural Language Models: Conditioned v. Unconditioned
	Slide 32: Summary of Terms You Should Know
	Slide 33: Summary of Terms You Should Know
	Slide 34: Summary of Terms You Should Know
	Slide 35
	Slide 36
	Slide 37: Tokenizing Text
	Slide 38: Tokenizing Text
	Slide 40: Turning Discrete Tokens into Continuous Vectors
	Slide 41: Encoder Inputs and Outputs
	Slide 42: Encoder Inputs and Outputs
	Slide 43: Decoder Inputs and Outputs
	Slide 44: Decoder Inputs and Outputs
	Slide 45: Decoder Inputs and Outputs
	Slide 46: Decoder Inputs and Outputs
	Slide 47: Decoder Inputs and Outputs
	Slide 48: Decoder Inputs and Outputs
	Slide 50: Loss Function: Negative Log Likelihood
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Now how do we do generation?
	Slide 58: Now how do we do generation?
	Slide 59: Now how do we do generation?
	Slide 60: Now how do we do generation?
	Slide 61
	Slide 62: 3. Decoding Strategies
	Slide 63: How can we sample from P Y t i. y 1: t 1 ?
	Slide 64: How can we sample from P Y t i. y 1: t 1 ?
	Slide 65: How can we sample from P Y t i. y 1: t 1 ?
	Slide 66: How can we sample from P Y t i. y 1: t 1 ?
	Slide 67: How can we sample from P Y t i. y 1: t 1 ?
	Slide 68: How can we sample from P Y t i. y 1: t 1 ?
	Slide 69: How can we sample from P Y t i. y 1: t 1 ?
	Slide 70: How can we sample from P Y t i. y 1: t 1 ?
	Slide 71: How can we sample from P Y t i. y 1: t 1 ?
	Slide 72: How can we sample from P Y t i. y 1: t 1 ?
	Slide 73: How can we sample from P Y t i. y 1: t 1 ?
	Slide 74: How can we sample from P Y t i. y 1: t 1 ?
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Beam Search
	Slide 88: Problems with Beam Search
	Slide 89: Problems with Beam Search
	Slide 90: When to Use Beam Search
	Slide 91
	Slide 92
	Slide 93
	Slide 94: 4. Language Model Architectures
	Slide 95
	Slide 97
	Slide 98: Recurrent Neural Networks
	Slide 99: Recurrent Neural Networks
	Slide 100: Recurrent Neural Networks
	Slide 101: Recurrent Neural Networks
	Slide 102: Recurrent Neural Networks
	Slide 103
	Slide 109: What did the generated text look like?

